CS (MAIN) Exam; 2016

M-ESC-U-MLE

यांत्रिक इंजीनियरी / MECHANICAL ENGINEERING प्रश्न-पत्र I / Paper I

निर्धारित समय: तीन घंटे

Time Allowed: Three Hours

अधिकतम अंक : 250

Maximum Marks: 250

प्रश्न-पत्र के लिए विशिष्ट अनुदेश

कृपया प्रश्नों के उत्तर देने से पूर्व निम्नलिखित प्रत्येक अनुदेश को ध्यानपूर्वक पहें :

इसमें आठ प्रश्न हैं जो दो खण्डों में विभाजित हैं तथा हिन्दी और अंग्रेज़ी दोनों में छपे हैं।

परीक्षार्थी को कुल पाँच प्रश्नों के उत्तर देने हैं।

प्रश्न संख्या 1 और 5 अनिवार्य हैं तथा बाकी में से प्रत्येक खण्ड से कम-से-कम एक प्रश्न चुनकर किन्हीं तीन प्रश्नों के उत्तर दीजिए।

प्रत्येक प्रश्न/भाग के अंक उसके सामने दिए गए हैं ।

प्रश्नों के उत्तर उसी माध्यम में लिखे जाने चाहिए जिसका उल्लेख आपके प्रवेश-पत्र में किया गया है, और इस माध्यम का स्पष्ट उल्लेख प्रश्न-सह-उत्तर (क्यू.सी.ए.) पुस्तिका के मुख-पृष्ठ पर अंकित निर्दिष्ट स्थान पर किया जाना चाहिए। उल्लिखित माध्यम के अतिरिक्त अन्य किसी माध्यम में लिखे गए उत्तर पर कोई अंक नहीं मिलेंगे।

प्रश्नोत्तर हेतु जहाँ कहीं भी प्राक्कल्पनाएँ की गई हैं, उन्हें स्पष्ट रूप से इंगित करें।

जहाँ आवश्यक हो, आरेखों। चित्राकृतियों को, प्रश्न का उत्तर देने के लिए दिए गए स्थान में ही बनाना है।

जब तक उल्लिखित न हो, संकेत तथा शब्दावली प्रचलित मानक अर्थों में प्रयुक्त हैं।

प्रश्नों के उत्तरों की गणना क्रमानुसार की जाएगी। यदि काटा नहीं हो, तो प्रश्न के उत्तर की गणना की जाएगी चाहे वह उत्तर अंशतः दिया गया हो। प्रश्न-सह-उत्तर पुस्तिका में खाली छोड़ा हुआ पृष्ठ या उसके अंश को स्पष्ट रूप से काटा जाना चाहिए।

Question Paper Specific Instructions

Please read each of the following instructions carefully before attempting questions:

There are EIGHT questions divided in TWO SECTIONS and printed both in HINDI and in ENGLISH.

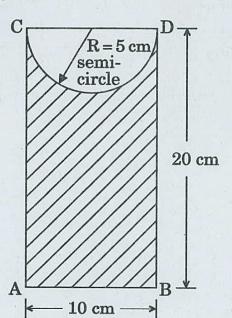
 ${\it Candidate\ has\ to\ attempt\ FIVE\ questions\ in\ all.}$

Questions no. 1 and 5 are compulsory and out of the remaining, any **THREE** are to be attempted choosing at least **ONE** from each section.

The number of marks carried by a question/part is indicated against it.

Answers must be written in the medium authorized in the Admission Certificate which must be stated clearly on the cover of this Question-cum-Answer (QCA) Booklet in the space provided. No marks will be given for answers written in a medium other than the authorized one.

Wherever any assumptions are made for answering a question, they must be clearly indicated.


Diagrams/Figures, wherever required, shall be drawn in the space provided for answering the question itself.
Unless otherwise mentioned, symbols and notations have their usual standard meanings.

Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

खण्ड A

SECTION A

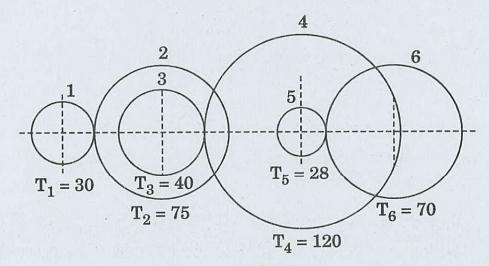
Q1. (a) चित्र में दिखाए गए छायांकित क्षेत्र का AB कोने के आर-पार जड़त्व आधूर्ण ज्ञात कीजिए।
Find the moment of inertia of the shaded area shown in the figure, about the edge AB.

(b) इस्पात की एक छड़ व्यास में 50 mm है और 600 mm लंबी है। पाया गया है कि 150 kN का तनन भार, छड़ को 0.23 mm फैला देता है। उसी छड़ पर जब 1.4 kN-m का बल आधूर्ण लगाया जाता है, तब पाया जाता है कि वह 1° ऐंठ गई है। चार प्रत्यास्थता स्थिरांकों के मानों को ज्ञात कीजिए।

A bar of steel is 50 mm in diameter and 600 mm long. A tensile load of 150 kN is found to stretch the bar by 0.23 mm. The same bar, when subjected to a torque of 1.4 kN-m is found to twist through 1°. Find the values of the four elastic constants.

(c) एक पिण्ड को 20° आनत तल पर ऊपर की ओर हिलाने के लिए, तल के समांतर कार्यरत 250 N बल की आवश्यकता है। यदि तल का आनित कोण 25° कर दिया जाए, तो तल के समांतर लगाया गया अपेक्षित बल 280 N पाया गया है। पिण्ड का भार और घर्षण गुणांक ज्ञात कीजिए।

An effort of 250 N is required just to move a certain body up an inclined plane of angle 20°, the force acting parallel to the plane. If the angle of inclination of the plane is made 25°, the effort, required again, applied parallel to the plane, is found to be 280 N. Find the weight of the body and coefficient of friction.


10

(d) अल्प, मध्यम और अधि कार्बन इस्पातों के संघटनों और उनके अनुप्रयोगों को लिखिए। Write the composition of low, medium and high carbon steels and their applications.

10

(e) दक्षिणावर्त दिशा में 1425 आर.पी.एम. पर मोटर द्वारा इनपुट शैफ्ट से चलाई जाने वाली एक बहुपद गियर माला चित्र में दिखाई गई है। गियरों पर व्यवस्था और दांतों की संख्या चित्र में दिखाई गई है। आउटपुट शैफ्ट की रफ़्तार (गित) और घूर्णन की दिशा का निर्धारण कीजिए। A compound gear train comprising the input shaft driven by a motor at 1425 rpm in clockwise direction is shown in the figure. The arrangement and the number of teeth on the gears is shown in the figure. Determine the speed of the output shaft and the direction of rotation of the output shaft.

10

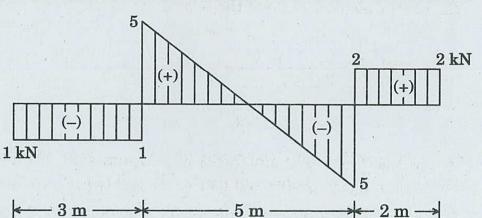
Q2. (a) एक कण का गति समीकरण समय 't' के पदों में त्वरण 'a' है, जैसा कि नीचे दर्शाया गया है :

$$a = 3t^2 + 2t + 4$$

जिसमें त्वरण 'a' m/s^2 में और समय 't' सेकंड में है । यह देखा जाता है कि 4 सेकंड के बाद कण का वेग 10~m/s है; और कण का विस्थापन 3~ सेकंड के बाद 6~ m है । निर्धारण कीजिए :

- (i) 6 सेकंड के बाद वेग
- (ii) 5 सेकंड के बाद विस्थापन

The equation of motion of a particle is given, acceleration 'a' in terms of time 't' as below:


$$a = 3t^2 + 2t + 4$$

in which acceleration 'a' is in m/s² and time 't' is in seconds. It is observed that the velocity of the particle is 10 m/s after 4 seconds; and the displacement of the particle is 6 m after 3 seconds. Determine:

- (i) Velocity after 6 seconds
- (ii) Displacement after 5 seconds

(b) एक धरन, जो आगे निकली हुई (प्रलंबी) है, के लिए अपरूपण बल आरेख चित्र में दर्शाया गया है। धरन पर भार का निर्धारण कीजिए और बंकन आधूर्ण आरेख बनाइए।

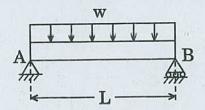
The S.F. diagram of a beam with overhangs is shown in the figure. Determine the loading on the beam and draw the B.M. diagram.

(c) इस्पातों के ऊष्मा उपचार में क्रांतिक शीतन दर क्या है ? TTT आरेख का इस्तेमाल करते हुए क्रांतिक शीतन के महत्त्व के सम्बन्ध में लिखिए । क्रांतिक शीतन दर पर प्रभाव डालने वाले कारक कौन-कौन से हैं ?

What is critical cooling rate in heat treatment of steels? Write about the significance of critical cooling using TTT diagram. What are the factors affecting critical cooling rate?

20

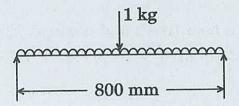
20


Q3. (a) एक पदार्थ के एक बिन्दु पर, दो परस्पर अवलम्ब तलों पर प्रतिबल 60 N/mm² (तनन) तथा 40 N/mm² (तनन) हैं। इन तलों को काटते हुए अपरूपण प्रतिबल 15 N/mm² है। पहले प्रतिबल के समतल के साथ 40° का कोण बनाते हुए समतल पर परिणामी प्रतिबल का परिमाण और दिशा ज्ञात कीजिए। इसके साथ इस समतल पर अभिलंब और स्पर्शरेखीय प्रतिबलों को भी ज्ञात कीजिए।

At a point in a material, the stresses on two mutually perpendicular planes are 60 N/mm² (tensile) and 40 N/mm² (tensile). The shear stress across these planes is 15 N/mm². Find the magnitude and direction of the resultant stress on a plane making an angle of 40° with the plane of the first stress. Also find the normal and tangential stresses on this plane.

(b) शुद्धालम्बित धरन AB पर प्रति इकाई लंबाई पर एकसमान वितरित भार 'w' है (चित्र) । धरन के प्रत्यास्थ बक्र और अधिकतम विक्षेप के समीकरण का निर्धारण कीजिए ।

The simply supported beam AB carries a uniformly distributed load 'w' per unit length (figure). Determine the equation of the elastic curve and the maximum deflection of the beam.


20

(c) सिरों पर शुद्धालम्बित, 800 mm लम्बाई और 25 mm व्यास वाले एक शैफ्ट, जिसके मध्य विस्तृति में 1 kg का द्रव्यमान रखा हुआ है, की घूर्णी (whirling) चाल निर्धारित कीजिए । शैफ्ट पदार्थ का घनत्व $50 \, \text{g/cm}^3$ और यंग का प्रत्यास्थता गुणांक $2 \times 10^{11} \, \text{N/m}^2$ है । Determine the whirling speed of a shaft, 25 mm diameter and 800 mm

long, with a mass of 1 kg placed at mid span, simply supported at the ends. The density of the shaft material is 50 g/cm^3 and Young's modulus of elasticity is $2 \times 10^{11} \text{ N/m}^2$.

20

Q4. (a) 3600 आर.पी.एम. पर प्रचालन कर रही 3.5 kW मोटर के रोटर के लिए, किस आमाप के शैफ्ट का इस्तेमाल किया जाना चाहिए, यदि शैफ्ट में अपरूपण प्रतिबल 58 MPa से ज़्यादा नहीं होना हो ?

What size of shaft should be used for the rotor of a 3.5 kW motor operating at 3600 rpm, if the shearing stress is not to exceed 58 MPa in the shaft?

- (b) निम्नलिखित योज्य किस प्रकार बहुलकों के गुणधर्मों को बदल देते हैं :
 - (i) पूरक
 - (ii) सुघट्यकारी
 - (iii) रंगक
 - (iv) स्नेहक

How do the following additives change the properties of polymers:

10

- (i) Fillers
- (ii) Plasticizers
- (iii) Colourant
- (iv) Lubricant
- (c) एक बहु-सिलिंडर प्रत्यागामी इंजन का वर्तन आघूर्ण आरेख पैमाने पर बनाया जाता है:

1 mm = 500 N-m, Y-अक्ष और 1 mm = 4°, X-अक्ष । माध्य बल-आधूर्ण रेखा के ऊपर और नीचे के क्षेत्रफल हैं :

जब इंजन 1000 आर.पी.एम. पर चल रहा हो । यदि रफ़्तार (गित) का माध्य उच्चावचन माध्य रफ़्तार (गित) के $\pm\,1\%$ से अधिक न हो, तो 400 mm की परिभ्रमण त्रिज्या के गितपालक का द्रव्यमान निर्धारित कीजिए ।

The turning moment diagram of a multi-cylinder reciprocating engine is drawn to scale:

1 mm = 500 N-m, Y-axis and 1 mm = 4° , X-axis.

The areas above and below the mean torque line are:

$$+50, -120, +95, -140, +90, -70 \text{ and } +95 \text{ mm}^2,$$

when the engine is running at 1000 rpm. If the mean fluctuation of speed is not to exceed \pm 1% of the mean speed, determine the mass of the flywheel of radius of gyration of 400 mm.

20

(d) 110 kg की एक मशीन 2×10^6 N/m दृढ़ता वाली प्रत्यास्थ नींव पर रखी हुई है। जब मशीन 150 rad/s पर चल रही होती है, तब मशीन पर 1500 N परिमाण का हार्मोनिक बल लगता है। स्थायी-दशा में मशीन का आयाम 1.9 mm मापा गया। नींव का अवमंदन अनुपात क्या है?

A 110 kg machine is mounted on an elastic foundation of stiffness 2×10^6 N/m. When operating at 150 rad/s, the machine is subject to a harmonic force of magnitude 1500 N. The steady-state amplitude of the machine is measured as 1.9 mm. What is the damping ratio of the foundation?

खण्ड B

SECTION B

Q5.	(a)	बिंदु क	बिंदु कर्तन औज़ार का चित्र बनाकर उसकी ज्यामिति नामांकित कीजिए । एक एकल र्तन औज़ार के लिए औज़ार हस्ताक्षर से मिलने वाली सूचना के साथ प्रारूपिक औज़ार र लिखिए ।	
		typica	and label the geometry of a single point cutting tool. Write a all tool signature for a single point cutting tool along with the nation which can be obtained from a tool signature.	10
	(b)	सहिष्णु	ता और छूट के बीच विभेदन कीजिए।	
		Differ	rentiate between Tolerance and Allowance.	10
	(c)	(i)	'मानक समय' को परिभाषित कीजिए।	
		(ii)	प्रेक्षित समय को मानक समय में किस प्रकार परिवर्तित किया जाता है ? ग्राह्य छूटों की सूची बनाइए ।	
		(i)	Define 'Standard time'.	
		(ii)	How is the observed time converted to standard time? List the admissible allowances.	10
	(d)	(i)	सम्पूर्ण गुणता प्रबन्धन (टी.क्यू.एम.) की आधारभूत संकल्पनाओं की सूची बनाइए ।	
		(ii)	किन्हीं पाँच पारम्परिक गुणता नियंत्रण (क्यू सी.) उपकरणों की सूची बनाइए ।	
		(i)	List the basic concepts of TQM.	
	Yes III	(ii)	List any five conventional QC tools.	10
	(e)	(i)	अलाभकर (लीन) उत्पादन के मूल सिद्धान्त बताइए ।	
		(ii)	अलाभकर उत्पादन की व्यापक उत्पादन से तुलना कीजिए ।	
		(i)	State the basic principles of lean production.	
		(ii)	Compare lean production with mass production.	10

Q6. (a) 800 mm³/min की धातु निष्कासन दर को प्राप्त करने के लिए शुद्ध लौह के विद्युत्-रासायनिक मशीनन के लिए आवश्यक धारा का परिकलन कीजिए। मानते हुए:

फैराडे स्थिरांक (F) = 96,500 कूलॉम लौह का परमाणु भार = 56लौह की संयोजकता = 2लौह का घनत्व = 7.8 g/cm^3

Calculate the current required for electrochemical machining of pure iron so as to achieve a metal removal rate of $800~\mathrm{mm}^3/\mathrm{min}$.

Consider:

Faraday's constant (F) = 96,500 Coulombs Atomic weight of iron = 56

Valency of iron = 2

Density of iron = 7.8 g/cm^3

10

- (b) (i) REL चार्ट क्या होता है ? सामीप्य निर्धारों (रेटिंग) के नाम लिखिए।
 - (ii) एक संयंत्र, जिसमें 6 विभाग A, B, C, D, E और F हैं, का अभिन्यास नीचे दिखाया गया है। समस्त विभागों का आकार व संरूप एक-जैसा है। विभागों के बीच सामग्री की प्रति लंबाई यात्रा सँभलाई (प्रहस्तन) लागत बराबर है। विभागों के बीच सँभलाई (प्रहस्तन) आवृत्तियाँ सारणी में दी गई हैं:

अभिन्यास

A	C	E
В	D	F

सँभलाई (प्रहस्तन) आवृत्तियाँ

					<u>C</u>	
तक से	A	В	C	D	E	F
A		0	90	160	50	0
В	_	-	70	0	100	130
C		- 12	-	20	0	0
D	-	<u>-</u>	-	-	180	10
E	-	-	_	-	_	40
F	-	-		-	-	-

अगल-बगल के विभागों, जिनकी सीमाएँ मिलती हैं, की दूरी इकाई मानते हुए, क्या विभाग C और F के स्थान को अदला-बदली करनी चाहिए ? अपने उत्तर का औचित्य लिखिए।

- (i) What is REL chart? Name closeness ratings.
- (ii) The layout of a plant consisting of six departments A, B, C, D, E and F is shown below. All departments are of the same size and configuration. The material handling cost per length travel between the departments is same. The handling frequencies between the departments are given in the table:

A C E
B D F

Handling Frequencies

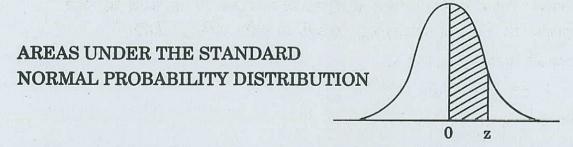
To From	A	В	C	D	E	F
A	_	0	90	160	50	0
В	_	-	70	0	100	130
C	-	_	-	20	0	0
D	_	-	-	_ }	180	10
E	<u> </u>	-	_	_	-	40
F	-	_	-		-	_

Taking the distance as a unit for the departments that share boundaries with the adjacent one, should the departments C and F be interchanged in location? Justify your answer.

- (c) (i) 'पर्ट' (PERT) में क्या सांख्यिकीय अभिगृहीत किए जाते हैं ? यदि पर्ट चार्ट में किसी क्रिया का प्रसरण बहुत अधिक हो, तो इसका समापन समय पर कैसा प्रभाव पड़ेगा ?
 - (ii) एक गुप्त सैनिक परियोजना की क्रियाएँ, पूर्व सम्बन्ध, क्रियाओं के आशावादी (MT_{0}) , सर्वसम्भावित (MT_{m}) तथा निराशावादी (MT_{p}) समापन अविध निम्नलिखित सूची में दिए गए हैं :

क्रिया का नाम	आवश्यक पूर्व क्रिया	दिनों में	सम्भावित उ	अवधि
19/41 4// 114	जानरचन रूच क्राचा	T_{o}	T_{m}	T_{p}
A	-	4	5	6
В	A	3	4	8
C	В	1	2	3
D	A, C	3	6	8
E	D	7	8	9
F	E	4	5	7
G	C	3	4	5
Н	D, E, G, I	12	13	15
I	C	1	2	4
J	G, H	1	1	1
K	F, H, J	1	6	7

इस परियोजना के लिए क्रिया तंत्र आरेख बनाइए । परियोजना के लिए क्रांतिक पथ क्या है ? इसकी क्या प्रसंभाव्यता है कि परियोजना (1) 45 दिनों में, और (2) 50 दिनों में पूरी हो जाएगी ?


[मानक सामान्य प्रायिकता बंटन के अधीन क्षेत्र संलग्न है]

- (i) What statistical assumptions are made in PERT? If a particular activity has a very high variance in PERT chart, how will this affect the completion time?
- (ii) A list of activities, precedence relations, and optimistic (T_0) , most likely (T_m) and pessimistic (T_p) activity completion times for a secret military project are given below:

Activity	Predecessor	Estimate	Estimated Time in Days			
Name	Activity	T _o	T_{m}	T_{p}		
A		4	5	6		
В	A	3	4	8		
C	В	1	2	3		
D	A, C	3	6	8		
E	D	7	8	9		
F	E	4	5	7		
G	C	3	4	5		
Н	D, E, G, I	12	13	15		
. I	C	1	2	4		
J	G, H	1	1	1		
K	F, H, J	1	6	7		

Draw the activity network diagram for this project. What is the critical path for the project? What is the probability that the project will be completed (1) in 45 days, and (2) in 50 days?

[The areas under the standard normal probability distribution is attached]

Values in the table represent the proportion of area under the normal curve between the mean $(\mu=0)$ and a positive value of z.

	$(\mu - 0)$	ana a po	SIUIVE VA	ide of Z.						
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2703	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990

Q7. (a) एक लांबिक खरादन प्रक्रम के लिए, छीलन व औज़ार के अन्तर्पृष्ठ पर, अपरूपण बल और गतिज घर्षण गुणांक का परिकलन निम्नलिखित आंकड़ों का प्रयोग करते हुए कीजिए :

छीलन की मोटाई $(t_c) = 0.4 \text{ mm}$ काट की चौड़ाई (b) = 2.5 mm भरण दर (f) = 0.2 mm/rev स्पर्शरेखीय कर्तन बल $(F_c) = 1100 \text{ N}$

प्रणोद बल $(F_t) = 290 \text{ N}$

कर्तन रफ़्तार (गति) = 2.5 m/sec

रेक कोण = + 10°

For an orthogonal turning process, calculate the shear force and kinetic coefficient of friction at chip-tool interface using the following data:

20

Chip thickness $(t_c) = 0.4 \text{ mm}$

Width of cut (b) = 2.5 mm

Feed rate (f) = 0.2 mm/rev

Tangential cutting force $(F_c) = 1100 \text{ N}$

Thrust force $(F_t) = 290 \text{ N}$

Cutting speed = 2.5 m/sec

Rake angle = $+10^{\circ}$

(b) एक कम्पनी चिकित्सीय परीक्षण उपकरण बनाने की योजना बना रही है। तीन स्थान A, B और C विचाराधीन हैं। स्थानों पर अनुमानित वार्षिक स्थायी लागत तथा प्रति इकाई परिवर्तनशील लागत नीचे सारणी में दी गई हैं:

स्थान	A	В	C
स्थायी लागत/वार्षिक (लाख ₹ में)	300	500	250
परिवर्तनशील लागत/इकाई (₹ में)	3000	2000	3500

उपकरणों की औसत बिक्री क़ीमत ₹ 7,000 प्रति इकाई ली जा सकती है।

- (i) यदि अनुमानित बिक्री मात्रा 18000 इकाई प्रति वर्ष हो, तो कौन-से स्थान का चयन किया जाना चाहिए ?
- (ii) प्रति वर्ष मुनाफ़ा (लाभ) कितना होगा ?

A company is planning to manufacture medical testing equipment. Three locations A, B and C are under consideration. The estimated fixed costs/annum and variable cost/unit at the locations are given in the table below:

Location	A	В	C
Fixed cost/Annum (in Lakh ₹)	300	500	250
Variable cost/unit (in ₹)	3000	2000	3500

The average sale price of the equipment may be taken to be ₹ 7,000 per unit.

(i) If the projected sales volume is 18000 units per year, which location should be chosen?

10

(ii) How much will be the profit per year?

(c) निम्नलिखित तालिका एक उत्पादन इकाई से समयक्रमानुसार लिए गए 5 मदों वाले 30 उपवर्गों के लिए स्पिंडल व्यासों $(mm\ \dot{t})$ के औसतों (\overline{X}) तथा परासों (R) को दर्शाती \bar{t} :

उपवर्ग	\overline{X}	R	उपवर्ग	$\overline{\mathbf{X}}$	R	उपवर्ग	$\overline{\mathbf{X}}$	R
1	45.020	0.375	11	45.600	0.275	21	45.260	0.150
2	44.950	0.450	12	45.020	0.175	22	45.650	0.200
3	45.480	0.450	13	45.320	0.200	23	45.620	0.400
4	45.320	0.150	14	45.560	0.425	24	45.480	0.225
5	45.280	0.200	15	45.140	0.250	25	45.380	0.125
6	45.820	0.250	16	45.620	0.375	26	45.660	0.350
7	45.580	0.275	17	45.800	0.475	27	45.460	0.225
8	45.400	0.475	18	45.500	0.200	28	45.640	0.375
9	45.600	0.475	19	45.780	0.275	29	45.390	0.650
10	45.680	0.275	20	45.640	0.225	30	45.290	0.350

पहले 20 उपवर्गों के आधार पर \overline{X} और R-चार्ट निर्मित कीजिए । आगे के शेष उपवर्गों (21 से 30 तक) के अनुसार प्रक्रिया के नियंत्रण में होने को जाँचें । आपका क्या निष्कर्ष है ? प्रक्रम सामर्थ्य ज्ञात कीजिए ।

5 इकाइयों के एक नमूने के लिए d_2 का मूल्य $2 \cdot 326$ है 1

The following table shows the averages (\overline{X}) and ranges (R) of the spindle diameters in mm for 30 sub-groups of 5 items each taken from a production line chronologically:

Sub-group	$\overline{\mathbf{X}}$	R	Sub-group	$\overline{\mathbf{X}}$	R	Sub-group	$\overline{\mathbf{X}}$	R
1	45.020	0.375	- 11	45.600	0.275	21	45.260	0.150
2	44.950	0.450	12	45.020	0.175	22	45.650	0.200
3	45.480	0.450	13	45-320	0.200	23	45.620	0.400
4	45.320	0.150	14	45.560	0.425	24	45.480	0.225
5	45.280	0.200	15	45.140	0.250	25	45.380	0.125
6	45.820	0.250	16	45.620	0.375	26	45.660	0.350
7	45.580	0.275	17	45.800	0.475	27	45.460	0.225
8	45.400	0.475	18	45.500	0.200	28	45.640	0.375
9	45.600	0.475	19	45.780	0.275	29	45.390	0.650
10	45.680	0.275	20	45.640	0.225	30	45.290	0.350

Construct \overline{X} and R-charts on the basis of the first 20 sub-groups. Check if the process continues under control for the remaining sub-groups (i.e., 21 to 30). What do you conclude? Find the process capability.

20

The value of d_2 for a sample of 5 is 2.326.

(a) स्थान (स्पॉट) वेल्डन प्रक्रम में बनी वेल्डन डली (नगेट) का आयतन 80 mm³ है। वेल्डन 10000 A विद्युत् धारा के इस्तेमाल से की गई है। धातु की इकाई मात्रा को द्रवित करने में 10 J/mm³ ऊर्जा की आवश्यकता होती है। यह मानकर चिलए कि 500 J ऊष्मा आस-पास की आधार धातु में विलीन हो जाती है, तथा संस्पर्श प्रतिरोध 0.0002 ohms है। परिकलन कीजिए (i) समय (सेकंड में) जिसके लिए वेल्डिंग धारा की पूर्ति की जाती है, और (ii) स्थान वेल्डन प्रक्रम की ऊष्मीय दक्षता, यदि अन्य ऊष्मा हानियाँ नगण्य हैं।

The volume of a weld nugget produced by spot welding process is 80 mm³. Welding is performed using 10000 A current. Energy required for melting of unit volume of metal is 10 J/mm³. Assume that heat lost to the surrounding base metal is 500 J and contact resistance is 0.0002 ohms.

Calculate the (i) time (in sec) for which the welding current is supplied, and (ii) thermal efficiency of the spot welding process if other heat losses are negligible.

10

Q8.

(b) धुलाई मशीन बनाने वाली एक कम्पनी शहर की जनसंख्या तथा धुलाई मशीन विक्रय के बीच में सम्बन्ध स्थापित करती है । किए गए बाज़ार अनुसंधान से निम्नलिखित सूचना प्राप्त हुई :

शहर की जनसंख्या (लाखों में)	5	7	15	22	27	36
धुलाई मशीनों की माँग (इकाई सैकड़ों में)	28	40	65	80	96	130

एक रैखिक समाश्रयण समीकरण बनाइए और 45 लाख जनसंख्या वाले शहर में धुलाई मशीनों की माँग का प्राक्कलन कीजिए।

A company manufacturing washing machines establishes a relationship between the sale of washing machines and the population of the city. The market research carried out reveals the following information:

Population of the city (in lakhs)	5	7	15	22	27	36
No. of washing machines demanded (unit in hundreds)	28	40	65	80	96	130

Fit a linear regression equation and estimate the demand of washing machines for a city of population of 45 lakhs.

- (c) एक ठेकेदार को सीमेन्ट के 1500 बोरे प्रति दिन की आवश्यकता है। कमी का निषेध है। सीमेन्ट की लागत ₹ 400 प्रति बोरा है। धारण लागत ₹ 0·2 प्रति बोरा प्रति दिन है और प्रति ऑर्डर, ऑर्डरकरण प्रक्रिया लागत ₹ 150 है।
 - (i) प्रति दिन इष्टतम खेप (लॉट) माप और व्यवस्था लागत ज्ञात कीजिए।
 - (ii) यदि, प्रति बोरे की क़ीमत निम्नलिखित योजना के अनुसार हो :

ख़रीद मात्रा (बोरे)	मूल्य/बोरी (₹)
0 - 1999	400
2000 और अधिक	395

क्या ठेकेदार को मात्रा छूट का लाभ लेना चाहिए ?

A contractor has a requirement of cement that amounts to 1500 bags per day. No shortages are allowed. Cement costs \neq 400 per bag. Holding costs are \neq 0·2 per bag per day and the ordering process cost per order is \neq 150.

- (i) Find the optimal lot size and the system cost per day.
- (ii) If, however, the price per bag is quoted in accordance with the following schedule:

Purchase Quantity (Bags)	Price/Bag (₹)
0 – 1999	400
2000 and above	395

Should the contractor take advantage of the quantity discount?