
Biochemistry-XL(Q) **GATE 2018**

Q. 1 – Q. 10 carry one mark each & Q.11 - Q.20 carry two marks each.

- Q.1 To which one of the following classes of enzymes does chymotrypsin belong?
 - (A) Oxidoreductase (B) Hydrolase
- (C) Transferase
- (D) Isomerase
- Q.2 The substrate saturation profile of an enzyme that follows Michaelis-Menten kinetics is depicted in the figure. What is the order of the reaction in the concentration range between 0.8 to 1.4 M? https://www.freshersnow.com/previous-year-question-papers/

- (A) Zero
- (B) Fraction
- (C) First
- (D) Second
- Q.3 Which one of the following conformations of glucose is most stable?
 - (A) Boat
- (B) Half Chair
- (C) Chair
- (D) Planar
- Q.4 Which one of the following profiles represent the phenomenon of cooperativity?

- Q.5 Which one of the following amino acids is responsible for the intrinsic fluorescence of proteins?
 - (A) Pro
- (B) Met
- (C) His
- (D) Trp

- Q.6 The glycosylation of the proteins occurs in___
 - (A) glyoxysomes

(B) lysosomes

(C) Golgi apparatus

(D) plasma membrane

GATE 2018 Biochemistry-XL(Q)

	P	Increasing	Group I concentration of sodi	um chloride	i	Group II Phenyl-Sepharose			
Q.12	Match the protein elution condition given in Group I with the appropriate chromatography matrices from Group II .								
	(A) R	&S	(B) P&R	(C) P&S		(D) Q&R			
			d glutathione dodecyl sulphate	(Q) Dithiothritol (S) Methionine					
Q.11	Among the reagents given below which one of the combination of reagents will NOT break the disulphide bonds in the immunoglobulin molecules?								
Q. 11 -	- Q. 20	0 carry tw	o marks each.						
Q.10	cuvett	te at 340 nm M ⁻¹ cm ⁻¹ . T	shows the value of 0	.31. The molar extin	ction c	n a path length of 1cm coefficient of NADH is µM (correct to integer			
Q.9			ADP ⁺ molecules requentose phosphate path			one molecule of glucose eger number).			
	 (A) the increase in pH of mitochondrial matrix. (B) changing the conformation of F₀F₁-ATPase to expel the ATP. (C) importing P_i from inter membrane space. (D) decreasing the affinity of ADP to F₀F₁-ATPase. 								
Q.8	The movement of protons through the F_0F_1 -ATPase during mitochondrial respiration is required for $___$								
	(B) ov (C) ov	ver-expressi ver-expressi	dylate synthase on of hypoxanthine-g on of inosine 5'-monoxanthine-guanine phos	ophosphate cyclohyd	rolase	sferase			
Q.7	Which one of the following properties of the myeloma cells is used in the hybride technology to generate monoclonal antibody?								

\mathbf{S}	Decreasing concentration of H ⁺		iv	Ni-NTA		
(A) P	-iii; Q-iv; R-i; S-ii	(B) P-ii; Q-iv; R-i; S-iii				
(C) P	-i; Q-ii; R-iii; S-iv	(D) P- iv; Q-ii; R-iii; S-i				

Increasing concentration of histidine

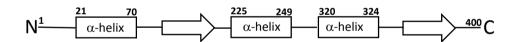
Decreasing concentration of ammonium sulphate

Q

R

XL(Q) 2/4

ii


iii

Chromatofocusing

DEAE-Sephacryl

GATE 2018 Biochemistry-XL(Q)

- Q.13 Which one of the following is **NOT** a neurotransmitter?
 - (A) Adrenaline
- (B) Glutamate
- (C) Histamine
- (D) Histidine
- Q.14 The type-II hypersensitivity reaction is mainly mediated by_____.
 - (A) IgE
- (B) IgM
- (C) IgA
- (D) T cells
- Q.15 Which one the following reaction mechanisms drives the conversion of low energy 3-phosphoglyceraldehyde to high energy 1,3-bisphosphoglycerate?
 - (A) Oxidation without anhydride bond formation
 - (B) Oxidation coupled with anhydride bond formation
 - (C) Substrate level phosphorylation
 - (D) Formation of carboxylate
- Q.16 A polymerase reaction is carried out for 10 cycles in a volume of 1 ml with 5 molecules of template DNA. Assuming that the efficiency of the reaction is 100 %, the number of molecules of DNA present in 100 µl at the end of the reaction is ____ (correct to integer number).
- Q.17 The secondary structure topology diagram of 400 amino acid long "Protein-X" is depicted in the figure. The start and end amino acid residue numbers of each α -helix are marked. The percentage (correct to integer number) of residues forming α -helix is

- Q.18 An enzyme follows Michaelis-Menten kinetics with substrate S. The fraction of the maximum velocity (V_{max}) will be observed with the substrate concentration [S] = $4K_{\text{m}}$ is _____ (correct to one decimal place). (K_{m} is Michaelis-Menten constant)
- Q.19 The mass spectrum of benzoic acid will generate the fragment as a base peak (100% relative abundance) of m/z (mass to charge ratio) at _____ (correct to integer number).

XL(Q) 3/4

GATE 2018 Biochemistry-XL(Q)

Q.20 The standard free energy (ΔG) values of reactions catalyzed by citrate lyase and citrate synthetase are -670 and -8192 cal/mol, respectively.

Citrate
$$\xrightarrow{\text{Citrate lyase}}$$
 Acetate + Oxaloacetate $\Delta G_1' = -670 \text{ cal/mole}$

Acetyl-CoA + Oxaloacetate + H₂O $\xrightarrow{\text{Citrate synthetase}}$ Citrate + CoA $\Delta G_2' = -8192 \text{ cal/mole}$

The standard free energy (in cal/mol) of acetyl-CoA hydrolysis is ____ (correct to integer number).

END OF THE QUESTION PAPER

XL(Q) 4/4